"The 5th International Workshop on Regulatory Approaches for Agricultural Applications of Animal Biotechnologies" Virtual Workshop.

Development of genome edited chickens for egg component regulation and production of recombinant proteins

Aug. 20, 2024 Jae Yong Han Secul National University

Development of transgenic and genome editing system in avian species

- ✓ Microinjection of gRNA and Cas9 into egg
- $\checkmark\,$ Stem cell mediated gene editing
- Possibility of somatic cell nuclear transfer(SCNT)

- Microinjection and SCNT not possible due to different developmental physiology
- $\checkmark\,$ Germ cell transplantation and Germline Chimera
- $\checkmark\,$ Germ cell-mediated gene editing

(Han and Park, 2018, J Anim Sci Elotechnol)

Significance of Primordial Germ Cells

Evolution of biotechnology in avian species has been achieved by development of the <u>avian germline transmission system</u> using primordial germ cells (PGCs)

Germline Transmission

 \checkmark Precice genome editing

 \checkmark Conservation of endangered bird species

Wild type OVA EGFP Wild type OVA EGFP

Genome editing for germ cell sterilization

Direct allele introgression into pure chicken breeds using Sire Dam Surrogate (SDS) mating

Maeve Ballantyne^{1,2}, Mark Woodcock ⁽¹⁾ ², Dadakhalandar Doddamani², Tuanjun Hu^{1,2}, Lorna Taylor², Rachel J. Hawken³ & Mike J. McGrew ⁽¹⁾ ^{1,2⊠}

100% pure breed edited offspring

(Ballantyne et al., 2021, Nat Comm)

CRISPR/Cas9 system: genetic scissors

Science

A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity

- Derived from bacterial immune system
- Cas9 + sgRNA induce double strand breaks

crRNA-tracrRNA chimera

Egg components modulation by PGC genome editing

圈

(Lillico et al., 2005, Drug Discov Today)

Minor allergens in egg yolk

Major allergens in egg white

(Dona and Suphioglu, 2020, International journal of molecular sciences)

Production of OVAL targeted genome edited chickens

Tae Sub Park^{a,b}, Hong Jo Lee^a, Ki Hyun Kim^a, Jin-Soo Kim^c, and Jae Yong Han^{a,1}

^aDepartment of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; ^bInstitute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 232-916, Korea; and ^cDepartment of Chemistry, College of Natural Science, Seoul National University, Seoul 151-921, Korea

✓ Knock-out of OVAL gene using TALEN in cultured PGC

(Park et al., 2014, PNAS)

Production of OVAL targeted genome edited chickens (CRISPR/Cas)

5' junction sequencing

OVAL genome sequence	PAM + gRNA		Vector sequence
CTGTTGTAGCCTACTATAGAGTAC	CCTGCATGGTACTATGTACAG	CATTCCATCCTTACATTT	rcactgttctgctgtttgctctagacaactcagagttcacc
CTGTTGTAGCCTACTATAGAGTAC	CCFGCATGGTACTATGTACAG	CATTCCATCCTTACATTT	rcactgttctgctgtttgctctagacaactcagagttcacc
CTGTTGTAGCCTACTATAGAGTAC	CFGCATGGTACTATGTACAG	CATTCCATCCTTACATTT	ICACTGTTCTGCTGTTTGCTCTAGACAACTCAGAGTTCACC
	3' juncti	ion sequencing	

(Unpublished data)

Production of OVAL targeted genome edited chickens

From OVAL^{+/-}hen

From OVAL^{-/-}hen

Production of OVAL targeted genome edited chickens

Ovalbumin

Lysozyme

Ovomucin

Egg white volume

Targeted nucleotide substitution (Base editing)

nature Letter

Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage

Alexis C. Komor^{1,2}, Yongjoo B. Kim^{1,2}, Michael S. Packer^{1,2}, John A. Zuris^{1,2} & David R. Liu^{1,2}

ARTICLE

doi:10.1038/nature24644

doi:10.1038/natu

Programmable base editing of $A \cdot T$ to $G \cdot C$ in genomic DNA without DNA cleavage

Nicole M. Gaudelli^{1,2,3}, Alexis C. Komor^{1,2,3}†, Holly A. Rees^{1,2,3}, Michael S. Packer^{1,2,3}†, Ahmed H. Badran^{1,2,3}, David I. Bryson^{1,2,3}† & David R. Liu^{1,2,3}

- \checkmark dCas9 is a mutated Cas9 protein that does not have nuclease activity.
- Cytosine base editor (CBE) converts a C/G base pair into a T/A base pair, and adenosine base editor (ABE) converts an A/T base pair into a G/C base pair.

(Kornor et al., 2016, Nature; Gaudelli et al., Nature, 2017)

Ovotransferrin (TF) KO-Applying base editing

FASEBICURNA

RESEARCH ARTICLE

Highly elevated base excision repair pathway in primordial germ cells causes low base editing activity in chickens

Kyung Youn Lee¹ | Hong Jo Lee¹ | Hee Jung Choi¹ | Soo Taek Han¹ | Kyu Hyuk Lee¹ Kyung Je Park¹ | Jin Se Park¹ | Kyung Min Jung¹ | Young Min Kim¹ | Ho Jae Han² | Jae Yong Han¹

Induction of premature stop codon in exon2 of TF gene

✓ The efficiency of the desired nucleotide substitution was 80.0% (12/15) in DF-1 cells, 28.0% (7/25) in PGCs

(Lee et al., 2020, FASEB.)

Ovotransferrin (TF) KO-Applying base editing

Desired substitution

Amino Acid Change

Nucleolide Change

D

Reference

~	۲	. "	•	9	۷		ĸ	**				· ·	э	9	۳		E .	n		
 GCT	ccc	000	AAG	TCA	GTC	ATC AC	A TO	.,Ø.,	TOZEC	ACC	ATA	TCC	TCT	CCA	GAA	GAG	AAG		Frequency	

Desired	GCT CCC CCC AAG TCA GTC ATC AG 14 TA 15 G 20 TG 22 ACC ATA TCC TCT CCA GAA GAG AAG	(5x)	(G19; G to A)	(W28 stop)
Substrumon	GCT CCC CCC AAG TCA GTC ATC AA. A TG , G 20 TG 22 C ACC ATA TCC TCT CCA GAA GAG AAG	(2x)	(G16; G to A)	(R27K)
	GCT CCC CCC AAG TCA GTC ATC AA. A TA JO 20 TO 20 ACC ATA TCC TCT CCA GAA GAG AAG	(27x)	(G16; G to A/ G19; G to A)	(R27K, W28 stop)
	GCT CCC CCC AAG TCA GTC ATC AA. A TG A TG CAC ATA TCC TCT CCA GAA GAG AAG	(3x)	(G16; G to A/ G20; G to A)	(R27K, W28 stop)
	GCT CCC CCC ANG TCA GTC ATC AA 10 TA 10 A30 TG 27C ACC ATA TCC TCT CCA GAA GAG AAG	(7x)	(G16; G to A/ G19; G to A/ G20; G to A)	(R27K, W28 stop)
Unwanted	GCT CCC CCC AAG TCA GTC ATC AG 10A TC 11G 20 TG 20C ACC ATA TCC TCT CCA GAA GAG AAG	(ttx)	(G19; G to C)	(W285)
substrution	GCT CCC CCC AAG TCA GTC ATC AG 10 ATT 10 G20 TG22C ACC ATA TCC TCT CCA GAA GAG AAG	(1x)	(G19; G to 7)	(W28L)
	GCT CCC CCC ANG TCA GTC ATC AT 10 A TG 10 30 TG 22 C ACC ATA TCC TCT CCA GAA GAG ANG	(1x)	(G16; G to 7)	(R27I)
	GCT CCC CCC AAG TCA GTC ATC AC 10 A TG 10 G 20 TG 22 C ACC ATA TCC TCT CCA GAA GAG AAG	(1x)	(G16; G to C)	(R27T)
	GCT CCC CCC AAG TCA GTC ATC AC A TA G20 TG20 ACC ATA TCC TCT CCA GAA GAG AAG	(7x)	(G16; G to C/G19; G to A)	(R27T, W28 stop)
	GCT CCC CCC AAG TCA GTC ATC AT A A G B TG 20 ACC ATA TCC TCT CCA GAA GAG AAG	(1x)	(G16; G to 7/ G19; G to A)	(R271, W28 stop)
Indel	GCT CCC CC	(1x)	(+18 bp)	(Inframe mutation)
	GCT CCC CCC AAG TCA GTC ATC A TO 16 TO 16 TO 16 TO 17 C ACC ATA TCC TCT CCA GAA GAG AAG	(3x)	(+1 bp)	(Frameshift mutation)
	GCT CCC CCC AAG TC+ CTC ATC AS IN TO DO TO TO TO TO TO TO TAKE AS	(1x)	(-38 bp)	(Frameshift mutation)
	GCT C	(1x)	(-22 bp)	(Frameshift mutation)
	GCT CCC CCC A-C-TCA GTC ATC AG 10A TG 10G 20 TG 22C ACC ATA TCC TCT CCA GAA GAG AAG	(3x)	(-4 bp)	(Frameshift mutation)
	GCT CCC CCC	(1x)	(-13 bp)	(Frameshift mutation)
	GCT CCC CCC AAG TCA GTC ATC A TO TO GIA GAS TO 20 TO 20 ACC ATA TCC TCT CCA GAA GAG AAG	(1x)	(-3 bp)	(Inframe mutation)
	GCT CCC CCC AACTER GTC ATC AG 10 ATG 10 G20 TG 22 ACC ATA TCC TCT CCA GAA GAG AAG	(1x)	(-4 bp)	(Frameshift mutation)
	GCT CCC CCC AAG TC	(1x)	(-11 bp)	(Frameshift mutation)
	GET CCC CCC AAG TCA GIC ATC AGTA TG G CACC ACTA TCC TCT CCA GAA GAG AAG	(1x)	(-7 bp)	(Frameshift mutation)

- ✓ 55.0% (44/80): the desired nucleotide substitution, 27.5% (22/80): unwanted nucleotide substitutions, 17.5% (14/80): deletion mutations.
- ✓ The efficiency of nucleotide substitution within the targeting window was highest at G in the 19th position (G19) and lowest at G20; no base editing occurred at G22

Ovotransferrin (TF) KO-Applying base editing

- ✓ TF null mutant: embryonic lethality between HH stages 16 and 46
- ✓ TF concentration of the KO heterozygotes (10.70 mg/ml) was ~60% of WT (16.70mg/ml)

函

(Kimet al., 2023, Poultry Science)

DAPI DAPI DAPI DAPI DAPI

(Scale bar = 50 um)

EGFP

(Kimet al., 2023, Poultry Science)

- ✓ Hitrap Q hp column and Superdex G75 analytical size exclusion chromatography.
- ✓ Most egg white derived human ADPN: form a hexamer (≥150 kDa) or HMW (≥360 kDa or more).

(Kimet al., 2023, Front Nutr)

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/biomaterials

Biomaterials

The transgenic chicken derived anti-CD20 monoclonal antibodies exhibits greater anti-cancer therapeutic potential with enhanced Fc effector functions

Young Min Kim ^a, Jin Se Park ^a, Sang Kyung Kim ^a, Kyung Min Jung ^a, Young Sun Hwang ^a, Mookyoung Han ^a, Hong Jo Lee ^a, Hee Won Seo ^b, Jeong-Yong Suh ^a, Beom Ku Han ^c, Jae Yong Han ^{a, d, *}

N-glycosylation of ovomucin from hen egg white

(Offengenden et al., 2011, Glycoconj J)

 The N-glycosylation pattern of egg white proteins is predominantly consist of terminal mannose and N-acetylglucosamine with absence of core fucosylation (afucosylation)

- ✓ CD20 mAb from EW. 14 N-glycan patterns with highmannose, afucosylation and terminal galactosylation
- Afucosylated CD20 mAb exhibited 8- to 16- fold increase of antibody dependent cell cytotoxicity (ADCC) effect compared to commercial Rituximab.

(Kimet al., Bornaterials, 2018)

(Park et al., 2023, Communications Biology)

th COS

41 NOS

Egg Yolk: Production of recombinant proteins

 \checkmark Accumulation of hlgG1 Fc in serum and egg yolks was verified by ELISA and western blot.

(Park et al., 2023, Communications Bology)

Conclusion

"Genome edited chicken: egg component regulation and production of recombinant proteins in egg"

Acknowledgement

Collaboration groups

Prof. V. Nair, Prof. Y. Yao

Prof. T. Kim

NR

 창의연구단

 조류 생식세포 제어 및 복제 연구단

 Center for Avian Germ Cell

 Modulation and Cloning

National Research Foundation of Korea

	Lab m	embers	
Dr. Jin-Kyoo Kim	Ms. Eui Sin Lee	Mr. Junwoo Lee	Mr. Kyung Je Park
Dr. Hee Jung Choi	Ms. Thirubasyini Songodan	Mr. Sulli Kim	Ms. Jihyun Jung
Mr. Seung Je Woo	Ms. Yu Jin Han	Ms. Jiwon Kim	Mr. Ki Hyeon Kim
Ms. Jinlee Kim		Mr. Chanyoung Kwon	Ms. Yun Ji Shin
12		Ms. Yu Jin Hong	Ms. Jin Mi Kim

THANK YOU

